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Abstract
With limited resources, growing environment constraints and downward pressure on the economy, increasing agricultural
environmental total factor productivity (AETFP) and its contribution to agricultural growth is significant for transforming
agricultural development to make it more resource efficient and environment-friendly. This paper considered technological
heterogeneity in different regions of China and measured AETFP in 30 provinces from 1997 to 2015 using the Metafrontier
Malmquist-Luenberger (MML) productivity index.Multi-dimensional analysis was made on temporal and spatial characteristics,
evolution patterns, and influencing factors of AETFP in China. The results showed that: (1) AETFP increased in the Ninth, Tenth,
Eleventh, and Twelfth Five-Year Plan periods, with average annual growth rates of 0.76%, 0.88%, 1.17%, and 0.87%, respec-
tively. (2) The average annual growth rate of AETFP in the eastern, central, and western regions decreased successively. The
eastern region generally had played a leading role. The central region had a catch-up effect on environmental production
technologies from the eastern region, while the western region lacked the catch-up effect. (3) The dynamic evolution of
AETFP had prominent features. For the whole nation, the kernel density curve of AETFP continuously moved to the right.
The main peak value continuously decreased and the width of the main peak continuously increased. The internal differences of
AETFP in the eastern and western regions exhibited an increasing trend, while the internal differences of AETFP in the central
region showed little change. (4) There was an inverted U-shaped relationship between agricultural economic growth and AETFP.
Both the disaster rate and planting structure had a negative impact on AETFP with varying degrees of significance. Income gaps
between urban and rural areas can partially offset the role of urbanization in promoting the growth of AETFP. The greater the
income differences between urban and rural areas, the weaker the role of urbanization in promoting the growth of AETFP. These
findings can help the government determine policies to change the agricultural development mode and formulate effective
measures to improve AETFP.

Keywords Technological heterogeneity . Agricultural environmental total factor productivity .MetafrontierMalmquist-Luenberger
productivity index . Influencing factors

Introduction

Rapid agricultural growth in China has been accompanied by
high levels of resource consumption and pollution (Liang
et al. 2015; Wei et al. 2017). More pesticides and fertilizers
are used in China than any other country. The total amount of
pesticides and fertilizers used is 15% higher than that in de-
veloped countries and the use of chemical fertilizers is 20%
higher than that in developed countries. Due to the excessive,
and often inappropriate, use of agrochemical inputs, environ-
mental pollution problems have become severe. In 2015, the
emissions of chemical oxygen demand (CODCr) from China’s
industrial sources and agricultural sources were 2.935 and
10.686 MT, respectively. The emissions of NH3-H from

Responsible editor: Philippe Garrigues

* Haibin Han
hshore@tjcu.edu.cn

1 School of Public Administration, Tianjin University of Commerce,
No.409 Guangrong Rd., Beichen District, Tianjin 300134, People’s
Republic of China

2 School of Economics, Zhejiang University of Finance and
Economics, Hangzhou 310018, China

3 Institute of Rural Development, Zhejiang Academy of Agricultural
Sciences, Hangzhou 310021, China

4 Department of Economics and Management, Tianjin Open
University, Tianjin 300191, China

Environmental Science and Pollution Research (2018) 25:32096–32111
https://doi.org/10.1007/s11356-018-3142-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-018-3142-4&domain=pdf
mailto:hshore@tjcu.edu.cn


www.manaraa.com

industrial and agricultural sources were 0.217 and 0.726 MT,
respectively (MEP 2015). Agriculture has surpassed industry
as an emission source of CODCr and NH3-H. In June 2018, the
Central Committee of the Communist Party of China and the
State Council made the deployments to enhance ecological
environment protection. One important goal, by 2020, is to
reduce at least 10% of the emissions of CODCr and NH3-H as
that in 2015. In addition, as a developing country, China has
always made development its top priority (Su et al. 2016). The
outline of China’s Thirteenth Five-Year Plan established tar-
gets such as consolidation and improvement of grain produc-
tion capacity by 2020 and a doubling of the per capita income
of rural residents by 2020 compared to 2010. Agriculture in
China faces the multiple pressures of energy conservation,
emissions reduction, and sustainable growth. Therefore, the
following issues in China agriculture must be dealt with: (1)
determining the proper relationship between agricultural
growth and environmental resources, (2) reducing agricultural
pollutant emissions while maintaining agricultural growth,
and (3) achieving sustainable agricultural growth.

In the context of tight constraints on resources and envi-
ronment management and the increasing downward pressure
on the economy, the choices for solving the multiple chal-
lenges facing agricultural development in China involve
changing the mode of agricultural development, increasing
the agricultural total factor productivity (ATFP), and
constructing a resource-conserving and environmentally
friendly mode of agricultural development (Song 2016).
Much research has been published concerning ATFP (Chen
et al. 2008; Nin-Pratt and Yu 2010; Hoang 2011; Peng et al.
2013; Yin et al. 2014; Gao 2015).

Unlike the parameter model, the data envelopment analysis
(DEA) model can avoid function-specification errors (Guo
et al. 2018; Yin 2017). For this reason, the DEA model is
widely used to measure the ATFP. However, the traditional
measurement of the ATFP ignores the effects of environmen-
tally harmful by-products. If the constraint of environmental
factors is not considered, the measurement results may be
inaccurate (Han and Zhao 2013). Chung et al. (1997)
established the Malmquist-Luenberger (ML) productivity in-
dex based on the directional distance function. Unlike the
traditional total factor productivity, which did not consider
the effect of environmentally harmful by-products, the ML
index did consider these effects. Since its introduction, the
ML productivity index has been widely used to measure the
total factor productivity considering undesirable outputs such as
environmentally harmful by-products. For example, Zhang et al.
(2011) evaluated the total factor productivity of China’s 30 pro-
vincial regions incorporating undesirable outputs using the ML
productivity index. Shao and Wang (2016) studied productivity
growth of China’s nonferrous metal industry using the ML pro-
ductivity index. They found that the total factor productivity of
the nonferrous metal industry would be overestimated if the

undesirable output was disregarded. Maziotis et al. (2017) used
the ML index to assess changes in the productivity of the water
industry in England and Wales with poor service quality as an
undesirable output. Yu et al. (2016) used the ML index to eval-
uate the total factor productivity of the pulp and paper industry
in China considering wastewater emissions, CODCr, andNH3-H
as undesirable outputs.

There have been attempts to integrate agricultural pollutant
emissions as undesirable outputs into the evaluation model of
ATFP, and several studies have examined agricultural envi-
ronmental total factor productivity (AETFP).1 For example,
Ye and Hui (2016) and Pan (2014) included agricultural non-
point source pollution as an undesirable output in the ATFP
evaluation model. Other studies have included agricultural
carbon emissions as undesirable outputs in the ATFP evalua-
tion model (Tian et al. 2015; Zhang et al. 2015; Fei and Lin
2017). However, most studies considered only one aspect of
the undesirable output of agriculture when measuring AETFP.
Few studies have considered both agricultural non-point
source pollution and agricultural carbon emissions. Thus, the
real agriculture production process has not been comprehen-
sively fitted to the model.

In measuring AETFP, existing studies usually assume that
different decision-making units (DMUs) have the same or
similar production technology.2 Under the assumption of tech-
nology homogeneity, all DMUs are evaluated based on the
same set of benchmark technologies (production frontier).

However, due to the differences between internal charac-
teristics and the external environment of DMUs belonging to
different groups, the set of benchmark technologies available
for different groups may not be the same (Wang et al. 2017a).
We recognize significant differences in resource endowments,
climatic conditions, cropping structure, and agricultural sys-
tems among the eastern, central, and western regions of China
(Du et al. 2014). Therefore, the potential optimal production
technology that can be achieved by different regions varies
due to the diversity of production frontiers. The heterogeneity
of production technologies in different regions must be con-
sidered because provinces located in different regions may
have different production frontiers with technological hetero-
geneity. Without this consideration, the measurement results
of AETFP in each province may deviate from their actual
values (Fei and Lin 2016). If provinces in different regions
are placed under different production fronts for comparison,
the lack of uniform standards can lead to the incomparability
of AETFP between provinces in different regions.

1 In this paper, the agricultural total factor productivity, which takes into ac-
count the environmental factors, is called the agricultural environmental total
factor productivity. There is also literature that calls it the agricultural green
total factor productivity.
2 Production technology, as defined herein, is a generalized production
technology term that refers to the knowledge and ability to convert
inputs into outputs.

Environ Sci Pollut Res (2018) 25:32096–32111 32097



www.manaraa.com

To overcome the heterogeneity among different groups of
samples, the meta-production function was proposed by
Hayami (1969) and further described by Battese and Rao
(2002) and by Battese et al. (2004). Rambaldi et al. (2007)
defined the meta-production function using the distance func-
tion and established the Metafrontier-Malmquist (MM) pro-
ductivity index using the DEA method. In this way, the con-
cept of meta-production function was extended to the field of
total factor productivity index measurement. However, the
MM productivity index does not account for the effects of
environmentally harmful by-products. To overcome the short-
comings of the MM productivity index, Oh (2010) proposed a
MML productivity index that incorporates undesirable out-
puts into the MM productivity index. The MML productivity
index not only deals with the heterogeneity of different groups
but also considers the effect of environmentally harmful by-
products. Since the report by Oh (2010), the MML productiv-
ity index has been widely used to measure the total factor
productivity of DMUs. For applications at the national level,
Lin et al. (2013) provide guidance. Choi et al. (2015) provided
background and direction for the province level, Chung and
Heshmati (2015) for the industrial level, Juo et al. (2015) for
Taiwanese credit departments, and Yu et al. (2017) for the
regional transport sector. However, little attention has been
given to using the MML productivity index on Chinese
agriculture.

In the context of previous research on these produc-
tivity indexes, we focused on three areas: (1) measuring
AETFP, considering both the undesirable outputs of ag-
ricultural non-point source pollution and agricultural
carbon emission simultaneously to produce more accu-
rate results. (2) AETFP in all of the China provinces
was measured based on the MML productivity index
under the framework of technological heterogeneity.
The technology gap among different regions was deter-
mined and the comparability of AETFP among different
provinces was also determined.

(3) Under technological heterogeneity, multidimen-
sional analysis was conducted for the AETFP in
China. The temporal and spatial characteristics and evo-
lution patterns of AETFP in China were explored and
empirical tests were performed on the influencing fac-
tors of AETFP using the DIF-GMM method (Arellano
and Bond 1991) and SYS-GMM (Blundell and Bond
1998) method of dynamic panel data.

The remainder of this paper is structured as follows.
In section BMethodology ,̂ we introduce the MML pro-
ductivity index. The details of the agricultural input and
output index as well as the data description are
presented in section BVariables and data^. Section BResults
and analysis^ reports and discusses the main results. We pres-
ent our conclusions and policy implications in section
BConclusions and implications^.

Methodology

Environmental production technology

Agriculture produces desirable outputs such as food and gen-
erates undesirable outputs that pollute water, air, and soil.
These outputs result from large inputs of fertilizers, pesticides,
and other production materials. To comprehensively and ob-
jectively model the agricultural production process, a set of
production possibilities that include both desirable and unde-
sirable outputs was constructed. Each province is considered
to be a DMU. Suppose there are k = 1, ..., K DMUs within the
time period of t = 1, ..., T that use N types of inputs
x ¼ x1; :::; xNð Þ∈RN

þ, and obtain M types of desirable outputs

y ¼ y1; :::; yMð Þ∈RM
þ and J types of undesirable outputs

b ¼ b1; :::; bJð Þ∈RJ
þ. Then, the set of production possibilities,

P(x), can be expressed as (Munisamy and Arabi 2015):

P xð Þ ¼ y; bð Þ : x can produce y; bð Þ; x∈RN
þ

� � ð1Þ

P(x) is assumed to satisfy three axioms.

if y; bð Þ∈P xð Þ and b ¼ 0; then y ¼ 0 ð2aÞ

if y; bð Þ∈P xð Þ and y
0
≤y; then y

0
; b

� �
∈P xð Þ ð2bÞ

if y; bð Þ∈P xð Þ and 0≤θ≤1; then θy; θbð Þ∈P xð Þ ð2cÞ

The first axiom in Eq. (2a) is known as null jointness. The
second axiom in Eq. (2b) means that the desirable outputs are
strongly disposable. The third axiom in Eq. (2c) suggests that
the undesirable and desirable outputs are jointly weakly
disposable (Chung and Heshmati 2015; Miao et al. 2016).

MML productivity index

Due to technological heterogeneity, it is assumed that
there are H different sample groups Rh(h = 1, ...,H). To
analyze the MML productivity index, three benchmark
technology sets need to be introduced: the contempora-
neous, the intertemporal, and the global benchmark
technology set (Tulkens and Eeckaut 1993). The con-
temporaneous benchmark technology set is defined as
Pt
Rh

xtð Þ ¼ yt; btð Þ : xt can produce yt; btð Þf g, where t = 1,

..., T, represent the set of production possibilities for the group
Rh at time t. The intertemporal benchmark technology set is

defined as PI
Rh

¼ conv P1
Rh
∪P2

Rh
∪:::∪PT

Rh

n o
, indicating the set

of production possibilities for the group Rh over the entire
period (t = 1, ..., T). It is difficult for a DMU of a certain
intertemporal benchmark technology set to reach the
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production technology of other intertemporal benchmark
technology sets. The global benchmark technology set is

defined as PG ¼ conv PI
R1
∪PI

R2
∪:::∪PI

RH

n o
, indicating the

set of production possibilities for all groups over the entire
period (t = 1, ..., T), and represents the maximum limit on
the output for DMUs. Figure 1 shows the relationship be-
tween the three benchmark technology sets using two

groups and two periods as examples. The intertemporal
benchmark technology set is the envelope curve of the
contemporaneous benchmark technology set of the group,
and the global benchmark technology set is the envelope
curve of the intertemporal benchmark technology set of the
group (Fig. 1).

Oh and Lee (2010) defined the MML productivity index as

MML xt; yt; bt; xtþ1; ytþ1; btþ1
� � ¼ 1þ DG

�!
xt; yt; btð Þ

1þ DG
�!

xtþ1; ytþ1; btþ1
� � ¼ 1þ Dt�!

xt; yt; btð Þ
1þ Dtþ1

��!
xtþ1; ytþ1; btþ1
� �

�
1þ DI

�!
xt; yt; btð Þ

	 

= 1þ Dt�!

xt; yt; btð Þ
� �

1þ DI
�!

xtþ1; ytþ1; btþ1
� �	 


= 1þ Dt�!
xtþ1; ytþ1; btþ1
� �� �

�
1þ DG

�!
xt; yt; btð Þ

� �
= 1þ DI

�!
xt; yt; btð Þ

	 


1þ DG
�!

xtþ1; ytþ1; btþ1
� �� �

= 1þ DI
�!

xtþ1; ytþ1; btþ1
� �	 


¼ TEtþ1

TEt � BPGtþ1

BPGt � TGRtþ1

TGRt ¼ EC � BPC � TGC

ð3Þ

where Ds�!
x; y; bð Þ ¼ inf β : x; yþ βy; b−βbð Þf ∈Ps

Rh
g; s ¼ t;

t þ 1 denotes the contemporaneous directional distance func-
tion defined on the contemporaneous benchmark technology

set; DI
�!

x; y; bð Þ ¼ inf β : x; yþ βy; b−βbð Þf ∈PI
Rh
g denotes

the intertemporal directional distance function defined on the

intertemporal benchmark technology set; and DG
�!

x; y; bð Þ ¼
inf β : x; yþ βy; b−βbð Þf ∈PGg denotes the global directional
distance function defined on the global benchmark technology
set. In addition, EC is the index of environmental efficiency
change, reflecting the catch-up effect of the decision-making

unit to the contemporaneous frontier of the group. BPC is the
index of the change in the best practice gap ratio between the
contemporaneous frontier and the intertemporal frontier dur-
ing two periods (Choi et al. 2015).BPC reflects environmental
technical change. When BPC is greater than (or less than) 1, it
indicates that the contemporaneous frontier of the group of the
DMU at t + 1 is closer to (or further away from) the group’s
intertemporal frontier than at t, reflecting the environmental
technology progress (or regression) of the group. TGC is the
index of environmental technology gap ratio change,
reflecting the change of the gap between the intertemporal

Fig. 1 Diagram of the MML
productivity index
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frontier and the global frontier of the group during two pe-
riods. When TGC is greater than (or less than) 1, it indicates
that the intertemporal frontier of the group at t + 1 of the DMU
is closer to (or further away from) the global frontier than that
of the group at t, reflecting the further narrowing (or widening)
of the gap between the environmental production tech-
nologies of the group and the global environmental production
technologies (Wang et al. 2015).

Figure 1 depicts the MML productivity index and its de-
composition. It assumes that a1 is the DMU with a period of 1
in group R1, and a2 is the DMU with a period of two in group
R1. Then, using the directional distance function, the MML
productivity index can be expressed as (Li et al. 2018):

MML xt; yt; bt; xtþ1; ytþ1; btþ1
� � ¼ 1þ a1d1

1þ a2d2
¼ 1þ a1b1

1þ a2b2

� 1þ a1c1ð Þ= 1þ a1b1ð Þ
1þ a2c2ð Þ= 1þ a2b2ð Þ �

1þ a1d1ð Þ= 1þ a1c1ð Þ
1þ a2d2ð Þ= 1þ a2c2ð Þ

ð4Þ

Oh (2010) demonstrated that the MML productivity
index of the k' DMU can be obtained by solving six

directional distance functions ( Ds�!
xs; ys; bsð Þ, DI

�!
xs; ys; bsð Þ

和DG
�!

xs; ys; bsð Þ, s = t, t + 1). The linear programming formula
of these directional distance functions can be uniformly
expressed as

Dd
�!

xk
0
;s; yk

0
;s; bk

0
;s

� �
¼ maxβ

s:t: ∑
con

λk;syk;sm ≥ 1þ βð Þyk
0
;s

m ;m ¼ 1; :::;M

∑
con

λk;sbk;sj ¼ 1−βð Þbk
0
;s

j ; j ¼ 1; :::; J

∑
con

λk;sxk;sn ≤xk
0
;s

n ; n ¼ 1; :::;N

λk;s≥0

ð5Þ

where d represents the type of directional distance func-
tion; λk, s is the weight vector; and con is the type of
benchmark technology set. These are the contemporane-
ous, intertemporal, and global benchmark technology
sets.

Econometric model

Due to the inertia of AETFP growth, its growth in a previous
period can affect the contemporaneous growth (Han et al.
2014). Therefore, the dynamic panel regression model was
used to empirically test the driving factors of AETFP.

According to the characteristics of agricultural production
and the availability of data, the preliminary influential factors
of AETFP growth selected in this study are the agricultural
economic growth level, the disaster rate, and the planting
structure. The main reasons of selection are as follows: (1)
improvement of the agricultural economic growth level can
usually improve agricultural infrastructure and increase agri-
cultural production input. However, the impact of agricultural
economic growth level on agricultural production usually oc-
curs in stages. Therefore, the impact of the agricultural eco-
nomic growth level and its square term on AETFP growth are
examined at the same time in this study. (2) Agricultural pro-
duction is greatly influenced by the natural environment. A
harsh natural environment can affect crop growth and natural
disasters can seriously harm agricultural development. (3)
China is in a critical period of economic transformation
and structural adjustment. Exploring the influence of
agricultural structure, especially the planting structure,
is significant to the growth of AETFP. Considering the
above factors, the following dynamic panel regression
model is established in this study:

lnMMLai;t ¼ β0 þ β1lnMMLai;t−1 þ β2lnagrii;t

þ β3 lnagrii;t
� �2 þ β4lnnaturei;t

þ β5lnstruci;t þ ui þ εi;t ð6Þ

Here, ln represents the natural logarithm, i and t represent
the region and time, u represents the individual fixed effect,
and ε is the random disturbance.MML is the index of AETFP,
and the superscript a indicates its cumulative value. lnMM
Lai;t−1 is the lag phase of the explained variables; agri is the
growth level of the agricultural economy represented by the
per capita net income of rural residents. To verify the existence
of Kuznets Curve of AETFP, the square term of the natural
logarithm of agricultural economy growth level, (lnagrii, t)

2,
was added to the model. The nature term is the disaster rate,
represented by the ratio of the disaster affected area and total
sown crop area. The struc term is the planting structure, rep-
resented by the ratio of the grain sown area and the total sown
crop area.

In order to further explore the impact of urbanization
and the urban-rural income gap on AETFP, model (6) was
expanded as follows:

lnMMLi;t ¼ β0 þ β1lnMMLi;t−1 þ β2lnagrii;t

þβ3 lnagrii;t
� �2 þ β4lnnaturei;t þ β5lnstruci;t

þ β6lnurbani;t þ β7lnuridi;t þ β8lnurbani;t

�lnuridi;t þ ui þ εi;t

ð7Þ
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Here, urban is the urbanization level, represented by
the proportion of urban population to the total popula-
tion; urid is the income gap between urban and rural
areas, expressed as the ratio of per capita disposable
income of urban residents to per capita net income of
rural residents; and lnurban × ln urid is the cross term
between the natural logarithm of urbanization level and
the natural logarithm of the urban-rural income gap. The
other variables are the same as in model (6). The data
of the explained variables were calculated from the next
sections. The data of other explanatory variables are
from the BCompilation of Statistical Data for Sixty
Years in New China,^ the BStatistical Yearbook of
China^ of each year, and the statistical yearbook of each
province.

Variables and data

Variables

Input variables

Land, labor, agricultural machinery, and fertilizer were select-
ed as agricultural input variables. (1) Land input. Arable land
area and sown area are the two main variables related to land
input available from the statistical yearbook. However, the
arable land area does not provide information on multiple
cropping and interplanting. Therefore, the total sown
area of crops was used to represent the land input var-
iable. (2) Labor input. The primary industry employees
were used to represent the labor input variable. The
1997–2010 data were from the BChina Statistical
Yearbook.^ The 2011–2015 data were from the statisti-
cal yearbooks of the provinces, and some of the data
with disagreement of statistical caliber had been adjust-
ed. (3) Agricultural machinery input. The agricultural
machinery gross power was used to represent the agri-
cultural machinery input variable. (4) The amount of
chemical fertilizer. The amount of chemical fertilizer
used for agricultural production was used to represent the
chemical fertilizer variable.

Output variables

Agricultural output variables should include both desirable
outputs and undesirable outputs. Desirable outputs are repre-
sented here by the gross output value of agriculture in 1997 at
constant prices. There are no direct data for the agricultural
undesirable output variable and it required correct measure-
ment methods. The agricultural undesirable output refers to
injuries to the agro-ecological environment caused by excess

application of pesticides and fertilizers, releases of livestock
and poultry manure, and the inappropriate disposal of
farmland wastes during agricultural production. This un-
desirable output mainly occurs as agricultural non-point
source pollution3 and agricultural carbon emissions.4

The unit survey and evaluation method were used to cal-
culate agricultural non-point source pollution, and the sources
of pollutants are identified as farmland fertilizer, animal hus-
bandry, and farmland solid waste. The calculation formula is
Ew = ∑ EUρ(1 − η)C, where Ew is the amount of agricultural
non-point source pollutant emissions into water, specifically
referring to the emissions of CODCr, total nitrogen(TN),
and total phosphorus (TP). EU is the statistical indicator
of the pollution unit. ρ is the pollutant production in-
tensity coefficient, η is the resource utilization efficiency
coefficient, and C is the pollutant emission coefficient.
Among these, all the parameters were obtained from the
literature (Lai 2004; Liang 2009). To facilitate the anal-
ysis, we converted the CODCr, TN, and TP types of
agricultural non-point source emissions into agricultural
non-point source standard equivalent pollution load
based on the class III standard in the surface water
environmental quality standard (GB3838-2002).

To calculate agricultural carbon emissions, we
constructed a formula based on the research of Tian
and Zhang (2013): Ea = ∑ (Ti × δi), where Ea is the
amount of agricultural carbon emissions; i is the ith
type of agricultural carbon emission source; T is the
characterization data of agricultural carbon emission
sources; and δ is the carbon emission coefficient of
agricultural carbon emission sources. We mainly
investigated CO2 gas emissions caused by the use of
agricultural materials and agricultural energy consumption in
the use of agricultural land; CH4 gas emissions from rice
cultivation; and CH4 and N2O emissions from livestock and
poultry farming. The carbon emission coefficients of the
agricultural carbon emission sources were based on the
research of Li et al. (2011) and Tian et al. (2012). To facilitate
the analysis, greenhouse gases such as CO2, CH4, and N2O
were converted into a standard C equivalent to unify the mea-
surement unit. According to the Fourth Assessment Report of
the IPCC (United Nations Intergovernmental Panel on
Climate Change), the greenhouse effect produced by 1 t of
CO2, CH4, and N2O is equivalent to the greenhouse effect
produced by 0.2727 t, 6.8175 t, and 81.2646 t of C,
respectively.

3 The concept of agricultural non-point source pollution came from an amend-
ment of the Clean Water Act of the United States in 1997. The amendment
addresses non-point source pollution as pollutants entering the surface water
and groundwater bodies in a multi-source, diffused, and trace form.
4 The concept of agricultural carbon emissions used in this paper is a general
term for agricultural greenhouse gas emissions.
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Data description

Panel data of 30 provincial administrative units (= provinces)
in Mainland China from 1997 to 2015 were studied. Tibet has
special resource endowment conditions, so this study exclud-
ed Tibet. Unless otherwise specified, the original data for each
variable came from the BChina Statistical Yearbook,^ BChina
Rural Statistical Yearbook,^ BChina Agricultural Statistical
Report,^ and the BChina Animal Husbandry Yearbook.^

Table 1 shows a simple statistical description of the input-
output variable of AETFP in the eastern, central, and western
regions. It shows large differences in the input and output of
agricultural production in different regions of China form
Table 1. Using the land input variable as an example, the
average total sown area of crops in the central region of
China was 7929.47 thousand ha during the study period.
This was nearly twice the average total sown area of crops
in the eastern region. In addition, the minimum total sown area
of crops was 173.70, 3653.15, and 466.80 thousand ha, in the
eastern, central, and western regions, respectively. The ratio of
the three was 1:21.0:2.69.

Due to the variation in resource endowments among
regions and differences in the scale and pace of economic
development, there are large differences in production

technology levels and production frontiers in the regions. It
was necessary to divide provinces into different groups based
on certain criteria. Li et al. (2013) considered that geographi-
cal location is a key factor affecting knowledge spillover and
technology diffusion speed. Therefore, based on data from the
National Bureau of Statistics, the provinces of China were
divided into eastern, central, and western groups having dif-
ferent production technology levels. The eastern group includ-
ed Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, and Hainan. The
central group included Shanxi, Jilin, Heilongjiang, Anhui,
Jiangxi, Henan, Hubei, and Hunan. The western group includ-
ed Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou,
Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.

Results and analysis

Temporal characteristics of AETFP of China
under technological heterogeneity

China’s agricultural MML productivity index and its decom-
position were calculated for each year of the survey period
(Table 2). For comparison, the ML productivity index and

Table 1 Statistical description of input and output variables of agricultural environmental TFP in the three regions

Regions Variables description Observed
value

Average
value

Standard
deviation

Maximum
value

Minimum
value

Eastern region Total sown area of crops (thousand hm2) 209 3970.45 3552.68 11,266.12 173.70

Employees in the primary industry (ten thousand people) 209 813.33 694.01 2510.50 36.35

Agricultural machinery gross power (ten thousand kW) 209 2757.26 3321.81 13,353.00 95.32

Amount of chemical fertilizer (ten thousand t) 209 157.59 143.67 500.34 9.90

Gross output value of agriculture (hundred million yuan) 209 1536.60 1189.66 5008.60 148.83

Agricultural non-point source standard equivalent
pollution load (106 m3)

209 390,146.27 346,090.61 1,315,877.35 32,865.36

Agricultural carbon emission (ten thousand t) 209 947.59 737.00 2466.82 71.83

Central region Total sown area of crops (thousand hm2) 152 7929.47 3136.87 14,425.00 3653.15

Employees in the primary industry (ten thousand people) 152 1324.53 798.61 3569.04 510.96

Agricultural machinery gross power (ten thousand kW) 152 3485.15 2397.25 11,710.10 750.00

Amount of chemical fertilizer (ten thousand t) 152 239.88 145.15 716.10 82.60

Gross output value of agriculture (hundred million yuan) 152 1576.51 822.18 4339.86 340.77

Agricultural non-point source standard equivalent
pollution load (106 m3)

152 388,615.46 231,164.05 1,185,104.38 98,916.69

Agricultural carbon emission (ten thousand t) 152 1531.42 639.42 2722.31 411.51

Western region Total sown area of crops (thousand hm2) 209 4606.49 2442.17 9717.70 466.80

Employees in the primary industry (ten thousand people) 209 951.97 664.43 2872.40 115.09

Agricultural machinery gross power (ten thousand kW) 209 1525.29 938.24 4404.50 207.90

Amount of chemical fertilizer (ten thousand t) 209 119.52 74.16 259.90 6.57

Gross output value of agriculture (hundred million yuan) 209 860.96 653.19 3101.72 59.01

Agricultural non-point source standard equivalent
pollution load (106 m3)

209 191,171.17 111,864.30 514,902.78 35,193.37

Agricultural carbon emission (ten thousand t) 209 916.99 555.53 2287.13 119.15
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its decomposition, without considering technological hetero-
geneity, are also given.

Table 2 shows the following: (1) China’s agriculturalMML
productivity index and ML productivity index differ. Except
for 2014–2015, the MML productivity indexes of other pe-
riods were less than the ML productivity index. Therefore,
when the ML productivity index is used, the AETFP may be
overestimated. This is because theML productivity index uses
the contemporaneous benchmark technology set. It uses the
contemporaneous potential best technology as a reference and
ignores the group technology heterogeneity. (2) Under the
global benchmark technology set, the AETFP index (MML)
of China increased by 0.94% annually from 1997 to 2015.
This estimate is significantly lower than the estimate of Li
(2014), which was referenced to the contemporaneous bench-
mark technology set. From 1997 to 2015, the index of agri-
cultural environmental efficiency change (EC) decreased by
0.14% annually, indicating that the underdeveloped provinces

did not catch up with the advanced provinces and receded
from the contemporaneous frontier of the group. The average
annual growth rate of the agricultural environmental technol-
ogy change index (BPC) was 1.13%, indicating that the con-
temporaneous frontier of the group gradually approached the
intertemporal frontier of the group. The gap in environmental
production technologies among the different provinces con-
tinued to shrink. The environmental production technologies
in the underdeveloped provinces appeared to provide a Bcatch-
up^ effect on the potential best environmental technologies in
the group. The index of the environmental technology gap
ratio change (TGC) decreased by an average of 0.05% annu-
ally indicating that the intertemporal frontier of the group con-
tinued to deviate from the global frontier. The gap between the
potential optimal environmental production technologies of
the three groups gradually increased. The agricultural environ-
mental technology change appears to be the major driving
force behind the growth of agricultural environmental total

Table 2 Timing characteristics of China’s agricultural MML productivity index and its decomposition

Year Global benchmark technology set Contemporaneous benchmark technology set

MML EC BPC TGC ML EC TC

1997–1998 1.0049 0.9996 1.0027 1.0026 1.0126 0.9919 1.0209

1998–1999 1.0092 1.0035 0.9972 1.0085 1.0116 1.0004 1.0112

1999–2000 1.0087 1.0009 1.0042 1.0037 1.0192 1.0044 1.0148

Average of the Ninth Five–year
Plan period

1.0076 1.0013 1.0014 1.0049 1.0145 0.9989 1.0156

2000–2001 1.0102 0.9974 1.0127 1.0002 1.0218 0.9924 1.0296

2001–2002 1.0112 0.9907 1.0232 0.9976 1.0216 0.9932 1.0286

2002–2003 1.0104 0.9958 1.0168 0.9979 1.0183 0.9932 1.0252

2003–2004 1.0063 0.9989 1.0113 0.9962 1.0170 0.9927 1.0245

2004–2005 1.0060 0.9986 1.0069 1.0006 1.0108 1.0039 1.0069

Average of the Tenth Five–year
Plan period

1.0088 0.9963 1.0142 0.9985 1.0179 0.9951 1.0229

2005–2006 1.0086 0.9963 1.0138 0.9987 1.0143 0.9940 1.0203

2006–2007 1.0300 1.0072 1.0256 0.9972 1.0351 1.0002 1.0349

2007–2008 1.0066 0.9994 1.0085 0.9987 1.0114 0.9979 1.0136

2008–2009 1.0059 0.9976 1.0087 0.9996 1.0106 0.9956 1.0151

2009–2010 1.0077 1.0038 1.0020 1.0018 1.0105 0.9996 1.0109

Average of the Eleventh Five-year
Plan period

1.0117 1.0008 1.0117 0.9992 1.0163 0.9975 1.0189

2010–2011 1.0109 1.0014 1.0123 0.9972 1.0115 0.9973 1.0142

2011–2012 1.0063 0.9979 1.0081 1.0003 1.0113 0.9965 1.0149

2012–2013 1.0092 0.9954 1.0167 0.9973 1.0150 0.9921 1.0231

2013–2014 1.0135 0.9982 1.0192 0.9963 1.0177 0.9925 1.0255

2014–2015 1.0036 0.9917 1.0147 0.9974 0.9945 0.8960 1.1100

Average of the Twelfth Five-year
Plan period

1.0087 0.9969 1.0142 0.9977 1.0100 0.9740 1.0369

Overall average 1.0094 0.9986 1.0113 0.9995 1.0147 0.9905 1.0244

Note: (1) Due to the data limitations, the Ninth Five-Year period only includes 3 years of data. (2) The average values in this table are geometric mean
values. (3) Due to paper length restrictions, we did not provide the measurement results based on the intertemporal benchmark technology set
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factor productivity. (3) AETFP increased, to varying degrees,
in the Ninth, Tenth, Eleventh, and Twelfth Five-Year Plan
periods, with average growth rates of 0.76%, 0.88%, 1.17%,
and 0.87%, respectively. The growth rate during the Eleventh
Five-Year Plan period was the highest and it exceeded the
average growth rate of the entire study period. This period is
an important window for promoting the new socialist coun-
tryside and agricultural modernization. During this period,
China established agriculture, rural areas, and farmers as the
focus for a series of policies introduced to improve agriculture
and benefit farmers. The government adopted a series of mea-
sures to promote the sustainable development of agriculture
and rural areas (Song 2010). In the first year of the Eleventh
Five-Year Plan period, the government abolished the agricul-
tural tax that had existed, nationwide, for millennia. This
greatly reduced the burden on farmers and enhanced agricul-
tural competitiveness. In 2007, BLaw of the People’s Republic
of China on Farmers’ Professional Cooperatives^ was
implemented and related policies have since been carried out
to promote rapid development of farmer professional cooper-
atives. The Ministry of Agriculture has implemented the
BOverall Framework of National Agricultural and Rural
Information Construction (2007–2015)^ and planned the de-
velopment of agricultural informatization. By 2009, more than
80% of the county level agricultural departments had infor-
mation services and regulatory agencies. The implementation
of these policies and measures has improved AETFP,
transformed the agricultural development mode, and promot-
ed sound and rapid agricultural development.

Spatial characteristics of AETFP of China
under technological heterogeneity

The spatial characteristics of AETFP in China were analyzed
by calculating the agricultural MML productivity index and
its decomposition in various regions and provinces (Table 3).

Table 3 shows the following: (1) the annual growth rate of
AETFP in the eastern, central, and western regions decreased
by 1.38%, 0.72%, and 0.66%, respectively, and numbers in
the central and western regions were lower than the national
average. In addition, the average annual growth rate of
AETFP in more than 60% of the provinces was lower than
the national average. Most of these provinces are located in
the central and western regions. There were only 10 provinces
above the national average, and all of these, except for
Shaanxi, were in the eastern region. (2) For the index of agri-
cultural environmental efficiency change, the central region
index increased by 0.04% annually, while the index values
of the eastern and western regions decreased by 0.34 and
0.08% annually. This indicated that only the agricultural en-
vironmental efficiency change in the central region had a pos-
itive contribution to the growth of AETFP, while the improve-
ment of agricultural environmental efficiency change in the
eastern and western regions reduced AETFP growth in these
areas. Among single provinces, the index of agricultural envi-
ronmental efficiency change of Henan, Ningxia, Hainan,
Shanxi, Yunnan, and Jiangsu provinces increased in varying
degrees while the index of the agricultural environmental ef-
ficiency change of the other provinces either remained the

Table 3 Spatial characteristics of China’s agricultural MML productivity index and its decomposition

Province MML EC BPC TGC Province MML EC BPC TGC

Beijing 1.0187 1.0000 1.0187 1.0000 Hunan 1.0070 1.0000 1.0046 1.0024

Tianjin 1.0070 0.9952 1.0118 1.0000 Guangdong 1.0130 0.9944 1.0187 1.0000

Hebei 1.0110 0.9965 1.0146 1.0000 Guangxi 1.0083 1.0000 1.0053 1.0031

Shanxi 1.0078 1.0025 1.0096 0.9957 Hainan 1.0242 1.0018 1.0224 1.0000

Inner Mongolia 1.0034 0.9934 1.0197 0.9905 Chongqing 1.0063 1.0000 1.0010 1.0053

Liaoning 1.0093 0.9904 1.0191 1.0000 Sichuan 1.0069 1.0000 1.0000 1.0069

Jilin 1.0068 1.0000 1.0025 1.0043 Guizhou 1.0064 0.9960 1.0020 1.0085

Heilongjiang 1.0072 1.0000 1.0054 1.0018 Yunnan 1.0086 1.0034 1.0094 0.9958

Shanghai 1.0097 0.9952 1.0145 1.0000 Shaanxi 1.0106 1.0000 1.0130 0.9976

Jiangsu 1.0203 1.0085 1.0117 1.0000 Gansu 1.0049 0.9978 1.0108 0.9963

Zhejiang 1.0139 0.9932 1.0209 1.0000 Qinghai 1.0055 0.9994 1.0216 0.9848

Anhui 1.0073 1.0000 1.0108 0.9965 Ningxia 1.0062 1.0008 1.0137 0.9918

Fujian 1.0136 0.9926 1.0212 1.0000 Xinjiang 1.0058 1.0000 1.0090 0.9968

Jiangxi 1.0053 1.0000 1.0000 1.0053 The eastern region 1.0138 0.9966 1.0172 1.0000

Shandong 1.0111 0.9954 1.0157 1.0000 The central region 1.0072 1.0004 1.0057 1.0011

Henan 1.0077 1.0003 1.0129 0.9945 The western region 1.0066 0.9992 1.0096 0.9979

Hubei 1.0087 1.0000 1.0002 1.0085 The whole nation 1.0094 0.9986 1.0113 0.9995

Note: The values in the table are the geometric mean values from 1997 to 2015
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same or declined. Liaoning province had the largest decline.
(3) The average annual growth rate of agricultural environ-
mental technology change in the eastern, central, and western
regions was 1.72%, 0.57%, and 0.96%, respectively, and the
index of agricultural environmental technology change in all
provinces was ≥ 1, with no regression of agricultural environ-
mental technology. This shows that, in comparison to the ag-
ricultural environmental efficiency change, agricultural envi-
ronmental technology change was the dominant factor pro-
moting the growth of AETFP in all regions. The communist
party and government consider innovation of agricultural sci-
ence and technology to be of great importance. They have
publicly supported and promoted the foundation, and social
status of agricultural science and technology innovation is the
No. 1 document of the Central Committee. China has made
considerable progress in the cultivation of new crop varieties,
integrated pest management, research and development of
new agricultural facilities and equipment, efficient utilization
of agricultural resources, and environmental remediation.
However, the loss of talented individuals promoting agricul-
tural science and technology and the inadequate level of farm-
er training and knowledge has produced a situation where new
agricultural environmental technologies are not transferred to
farmers and the implementation of current agricultural re-
search is low. Thus, the agricultural environmental efficiency
change cannot be coordinated and unified with agricultural
environmental technology changes. (4) The indexes of the
agricultural environmental technology gap ratio in the eastern,
central, and western regions were 1, 1.0011, and 0.9979, re-
spectively.5 This shows that all provinces in the eastern region
are at the global production frontier, play leading roles, and
represent the best environmental production technologies in
China. The gap between the production frontier of the central
region and the production frontier of the eastern region has
gradually narrowed, showing the catch-up effect on the EPT in
the eastern region. However, the gap between the production
frontier of the western region and the production frontier of
the eastern region has gradually increased, indicating no
catch-up effects on environmental production technologies
in the eastern region.

The dynamic evolution of AETFP of China
under technological heterogeneity

Although a previous study conducted statistical analysis on
the temporal characteristics and spatial characteristics of the
AETFP in China, it did not examine the dynamic evolution of
AETFP. The distribution of the AETFP appears to be random
and complex. Its distribution function is difficult to determine.
To adequately describe and analyze the dynamic evolution

characteristics of AETFP, we used the kernel density estima-
tion method, which does not require the prescribed function.
Kernel density estimation is a nonparametric estimation meth-
od and is mainly used to estimate the probability density of
random variables. The distribution of random variables is de-
scribed by continuous density curves. This method is widely
used to estimate unknown distributions because it does not
require a preset function form.

To ensure study integrity and continuity, the entire study
period was divided into three intervals: 1998–2003, 2004–
2009, and 2010–2015. The Gaussian kernel function was used
to draw the kernel density curve of AETFP in the whole county
and in the eastern, central, and western regions (Wang et al.
2017b) (Fig. 2). In Fig. 2, the horizontal axis shows the cumu-
lative AETFP and the vertical axis represents the kernel density.

Figure 2a illustrates the dynamic evolution of AETFP in all
provinces of China. (1) The kernel density curve of AETFP
moved to the right, indicating that AETFP had a continuous
upward trend. The average AETFP values in 1998–2003,
2004–2009, and 2010–2015 were 1.0293, 1.0935, and
1.1594, respectively. The average AETFP in the third and sec-
ond stages increased by 12.65 and 6.24% compared to the first
stage. (2) The main peak value of the kernel density curve of
AETFP continued to decrease, width of the main peak contin-
ued to increase, and the difference of AETFP among all prov-
inces showed an expansion trend. Specifically, comparing
2004–2009 with 1998–2003, the main peak value of the kernel
density curve dropped sharply and the width of the main peak
increased. This indicated that the distribution of AETFP in this
stage had become more dispersed and the regional differences
had increased. Comparing 2010–2015 with 2004–2009, the
main peak value of the kernel density curve continued to de-
cline and the width of the main peak slightly increased.
Meanwhile, the center of the kernel density function shifted to
the right. The two forces promoting the changes in regional
differences of AETFP offset each other and no obvious changes
in the regional differences of the provinces occurred in this
stage. Compared to 1998–2003, the main peak of the kernel
density curve of 2010–2015 dropped sharply, the width of the
main peak increased sharply, and the right tail of the distribution
increased. Although the center of the density function shifted to
the right, the force from the latter driving smaller regional dif-
ferences of AETFP among the provinces was weaker than the
force from the former promoting larger regional differences
among the provinces. The differences of AETFP among the
provinces during the entire study period show an overall expan-
sion trend. (3) During the entire study period, the kernel density
curve of AETFP consisted of one main peak and two flanking
peaks. Specifically, the kernel density curve of 1998–2003
consisted of one main peak and two flanking peaks. From
2004 to 2009, the left flanking peak of the kernel density curve
disappeared and two obvious flanking peaks appeared on the
right. This shows that, over time, significant multi-level

5 The index of agricultural environmental technology gap ratio of the prov-
inces in the eastern region is also 1.
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differentiation phenomena occurred in the distribution of
AETFP in China, and two Bclubs^ with relatively fast develop-
ment and a high index of AETFP were formed.

Figure 2b–d illustrates the dynamic evolution of AETFP in
the eastern, central, and western regions. (1) The kernel den-
sity curve of AETFP in the eastern, central, and western re-
gions continuously moved to the right, indicating that AETFP
in all regions showed a continuous upward trend. (2) During
the entire study period, the overall distribution of AETFP in
eastern China showed a decrease in the main peak value and
an increase in the width of the main peak. This indicated that
the internal differences of AETFP in eastern China tended to
expand. The main peak of the kernel density curve of AETFP
in the central region first increased and then decreased and the
width of the main peak first decreased and then increased.
However, no significant change occurred in the whole. This
shows that the internal differences of AETFP in the central
region had little change. The main peak of the kernel density
curve of AETFP in western China decreased first and then
rose and the width of the main peak first increased and then
decreased. In general, the main peak decreased, the width of
main peak increased, and the distribution range increased.

This indicates that the internal differences of AETFP in the
western region had an increasing trend. (3) The kernel density
curve of AETFP in the eastern region showed an evolving
trend from three peaks to two peaks, indicating that AETFP
in eastern China evolved from multi-level differentiation to
polarization. The kernel density curve of AETFP in the central
region always showed a single peak distribution, indicating
that AETFP in central China did not show polarization during
the study period. The kernel density curve of AETFP in the
western region evolved from a single peak to a double peak,
indicating that AETFP in western China was polarized in the
latter part of the study period.

Analysis of factors influencing AETFP
under technological heterogeneity in China

The temporal and spatial characteristics and evolution patterns
of AETFP in China were previously discussed, but the forma-
tion of such characteristics and patterns was not analyzed. To
this end, the dynamic panel regression model was used to test
the factors driving AETFP growth. The results help illuminate
the internal mechanisms that affect AETFP growth.

Fig. 2 Kernel density estimates of
agricultural environmental TFP in
China and in its eastern, central,
and western regions
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The explanatory variables of model (6) and model (7) all
contain the lag phase of the explained variables, so endoge-
nous problems remain. In addition, there may be a causal
relationship between AETFP and the level of agricultural eco-
nomic growth. The level of agricultural economic growth may
have an impact on AETFP and the improvement of AETFP
may also contribute to the growth of the agricultural economy.
Therefore, the natural logarithm of agricultural economic
growth and its square terms are regarded as endogenous ex-
planatory variables. The DIF-GMM method and the SYS-
GMMmethod were used tomanage the endogenous problems
in model (6) and model (7). In addition, as a comparison, the
estimation results of mixed OLS and fixed-effect methods are
also shown (Table 4).

The results of the AR (2) test and Sargan test of DIF-GMM
method and SYS-GMM method in Table 4 show a lack of
second-order correlation among the error terms of the model.
The tool variables used in the model are reasonable and there
was no over-identification problem. Both the DIF-GMM and
SYS-GMMmethods can be used to estimate the model. In the
dynamic panel regression model, both the mixed OLS estima-
tors and the fixed-effect estimators of the lag phase of the
explained variables were biased up and biased down around
the true value, respectively (Bond 2002). Thus, the estimated
coefficient of lnMMLi, t − 1 was estimated to be within the range
of 0.8312 to 0.9934. Table 4 shows that both coefficients of the
lag phase of the explained variables estimated by DIF-GMM
method and SYS-GMMmethod are within a reasonable range.
Therefore, the estimation results of these two methods appear
to be reliable. Although both the DIF-GMM and SYS-GMM
methods can effectively solve the endogenous problem in the
econometric model, the SYS-GMMmethod can overcome the
small sample bias problem compared to the DIF-GMM meth-
od, and this studymainly focuses on the estimated results of the
SYS-GMM method in the following discussion.

Based on the estimation results of column (4) in Table 4, we
reached the following conclusions: (1) the coefficient of the
natural logarithm of agricultural economic growth level is sig-
nificantly positive, while the coefficient of its square term is
significantly negative, indicating an inverted U-shaped rela-
tionship between agricultural economic growth and AETFP.
When the level of agricultural economic growth exceeds the
turning point of the inverted U-shaped curve, AETFP de-
creased as the level of agricultural economic growth increased.
This verifies the existence of the Kuznets Curve of AETFP and
reflects the catch-up effect of the underdeveloped agriculture
areas on the developed areas. This conclusion is consistent with
the findings of Du et al. (2016). (2) The coefficient of the
natural logarithm of the disaster rate was significantly negative
(p < 0.01) and an increase of 1% in the disaster rate could cause
a decrease of 0.53% in AETFP. Agriculture belongs to the
natural inferiority industry. This is because it is largely depen-
dent on the natural environment and is unable to withstand

natural disasters. Natural disasters seriously affect normal agri-
cultural production. (3) The coefficient of the natural logarithm
of planting structure was − 0.0126, and the significance level
was 10%. This shows that the planting structure has a slight
negative effect on AETFP, but the effect was not significant.

Table 4, columns (5)–(7) show results of the SYS-GMM
method based on model (7), mainly examining the impacts of
urbanization level and the urban-rural income gap on AETFP.
The main conclusions are: (1) after the new explanatory var-
iables are added to model (6), the sign and significance of the
variables such as lnMMLi, t − 1, lnagrii, t, (lnagrii, t)

2, lnnaturei,
t, and lnstruci, t did not significantly change, indicating the
robustness of the estimation results. (2) The level of urbaniza-
tion has a significant positive effect on AETFP. Increasing the
proportion of urban population can increase the demand for
agricultural products, raise the prices of agricultural products,
promote the enthusiasm for agricultural production, and ulti-
mately improve AETFP. (3) The widening income gap be-
tween urban and rural areas can speed up the transfer of the
rural labor force. In particular, the rural labor force, with high
human capital, may shift from agriculture to non-agricultural
industry and from rural areas to urban areas. This results in the
loss of important rural labor and inhibits AETFP growth. (4)
The cross term between the natural logarithm of the urbaniza-
tion level and the natural logarithm of the urban-rural income
gap was significantly negative (p < 0.01) indicating that the
urban-rural income gap can partially offset the urbanization
contribution to the growth of AETFP. The greater the income
gap between urban and rural areas, the weaker the contribu-
tion of urbanization to the growth of AETFP.

Conclusions and implications

Conclusions

The MML productivity index, which considers the heteroge-
neity of regional technology, was used to empirically measure
AETFP including both agricultural non-point source pollution
and agricultural carbon emissions as undesirable outputs. On
this basis, the temporal and spatial characteristics, evolution
patterns, and influencing factors of AETFP were studied. Our
primarily findings are as follows.

(1) When the traditional ML productivity index is used to
measure AETFP, it may overestimate the actual AETFP
value. This is because the ML productivity index uses a
contemporaneous benchmark technology set and is based
only on the potentially best technology of the contempo-
raneous period. It thus ignores the technological hetero-
geneity of the study group. Under the global benchmark
technology set, AETFP increased during the Ninth,
Tenth, Eleventh, and Twelfth Five-Year Plan periods.
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Agricultural environmental technology change is the ma-
jor driving force behind the growth of AETFP. The aver-
age annual growth rate of AETFP in the eastern, central,
and western regions decreased successively. The rate in
the eastern region was higher than the national average
while the rate in both central and western regions was
lower than the national average. In addition, the prov-
inces in the eastern region were at the global production
frontier. The central region has a catch-up effect on envi-
ronmental production technologies in the eastern region,
while the western region has no catch-up effect on envi-
ronmental production technologies in the eastern region.

(2) The dynamic evolution of AETFP throughout the nation
and in the eastern, central, and western regions has unique
characteristics. For the whole nation, with the continuous
rise of AETFP, the values of AETFP among all provinces
show an overall expansion trend. For a long time, the
distribution of AETFP in China has shown a multi-level
differentiation phenomenon. The internal differences of
AETFP within the eastern and western regions have an
increasing trend while the internal differences of AETFP
in the central region show no obvious change. During the
study period, AETFP in eastern China evolved from
multi-level differentiation to polarization. However, in
the latter part of the study period, AETFP in the western
region also became more polarized. During the study pe-
riod, the central region did not show polarization.

(3) An inverted U-shaped relationship exists between agri-
cultural economic growth and AETFP. This verifies the
existence of the Kuznets Curve of AETFP and reflects
the catch-up effect of underdeveloped agricultural areas
on these developed areas. The disaster rate and the plant-
ing structure have negative effects on AETFP, but the
latter effect on AETFP was not significant in this study.
Furthermore, the income gap between urban and rural
areas can partially offset the promoting effect of urbani-
zation on the growth of AETFP. Notably, the larger the
urban-rural income gap, the weaker the contribution of
urbanization to the growth of AETFP.

Policy implications

Based on the results and conclusions, several policy implica-
tions are proposed.

(1) Due to the heterogeneity of technology in different re-
gions, a Bone size fits all^ policy should not be adopted
to formulate regional agricultural green development.
All regions should implement differentiated develop-
ment paths according to their local characteristics. As
the leader of agricultural environment technology, the
eastern region should focus on independent research

development and innovation of technologies while con-
tinuing to introduce advanced external agricultural pro-
duction technologies, energy-saving and emission-
reduction technologies. The central and western regions
should strengthen their technological exchanges and co-
operation with the eastern region to promote the flow of
agricultural production information between regions.
The gap between the frontiers of agricultural production
in the eastern and western regions is gradually widening
so the government should focus on the western regions in
formulating relevant policies and increase financial sup-
port for agriculture in these areas.

(2) Agricultural environmental technological change is the
major driving force behind the growth of AETFP, while
agricultural environmental efficiency change has not
played a significant role. Therefore, while continuing to
maintain environmental technological advances in agricul-
ture, more attention should be paid to optimizing the allo-
cation of agricultural production resources and improving
the operation and management of agricultural production.
This will help improve agricultural environmental efficien-
cy and make up the shortfall in the growth of AETFP.

(3) Based on the analysis of the influencing factors of
AETFP growth, the effective measures for promoting
the growth of AETFP include the following: under the
premise of ensuring food security, reduce the grain pro-
duction area and optimize the planting structure;
strengthen the construction of agricultural disaster pre-
vention systems and improve the capacity of agricultural
disaster prevention and reduction; and reduce the urban-
rural income gap, raising the level of urbanization and
promoting the gradual transfer of rural surplus labor
forces to urban areas.
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